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Abstract—The booming Internet of Things makes smart
healthcare a reality, while cloud-based medical storage
systems solve the problems of large-scale storage and
real-time access of medical data. The integrity of medical
data outsourced in cloud-based medical storage systems
has become crucial since only complete data can make
a correct diagnosis, and public auditing protocol is a key
technique to solve this problem. To guarantee the integrity
of medical data and reduce the burden of the data owner,
we propose an efficient privacy-preserving public audit-
ing protocol for the cloud-based medical storage systems,
which supports the functions of batch auditing and dy-
namic update of data. Detailed security analysis shows that
our protocol is secure under the defined security model. In
addition, we have conducted extensive performance evalu-
ations, and the results indicate that our protocol not only
remarkably reduces the computational costs of both the
data owner and the third-party auditor (TPA), but also sig-
nificantly improves the communication efficiency between
the TPA and the cloud server. Specifically, compared with
other related work, the computational cost of the TPA in
our protocol is negligible and the data owner saves more
than 2/3 of computational cost. In addition, as the number
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of challenged blocks increases, our protocol saves nearly
90% of communication overhead between the TPA and the
cloud server.

Index Terms—Auditing protocol, batch auditing, cloud-
based medical storage, integrity, privacy preserving.

I. INTRODUCTION

W ITH the popularity of mobile Internet and the Internet
of Things (IoT), the amount of data collected by various

devices has grown exponentially, and the era of Big Data has
come into our daily lives. According to the IDC’s white paper
“Data Age 2025” [1], the global data in 2025 is expected to
reach 175ZB. The traditional storage method is unable to satisfy
the demands for the storage of a huge amount of current data.
Luckily, cloud storage [2], [3], which is regarded as a powerful
resource system of data storage, can provide users with different
pay-as-you-go cloud services remotely without directly being
managed by users. Because of its ability to provide users with
highly reliable, scalable, and on-demand services at a low price,
cloud storage has received widespread attention and has been
applied in many real-world scenarios today, and an increasing
number of organizations and individuals are migrating their data
to cloud storage. Up to date, the booming cloud storage has
spawned a series of cloud service providers, such as Amazon
AWS, Google Drive, Microsoft Azure, and so on.

The integration of various advanced technologies such as
information, telecommunications, and sensors has made smart
medical care possible. In the vision of smart healthcare, the
medical data of patients is collected by different types of medical
sensors and then used by medical staff to diagnose the patients’
physical condition. By collecting data from a large number of
patients, medical institutions can evaluate the health status of
residents in the region and make predictions about current epi-
demics. As the smart medical system generates a large amount
of data, it is a wise choice to outsource the medical data to cloud
storage to facilitate users’ access to the data and help doctors
make real-time diagnosis. Compared with other types of data,
medical data has its particularity. On the one hand, medical data
contains a large amount of patients’ private information. On the
other hand, the integrity of medical data is particularly important
because it is the basis for making a correct diagnosis.
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Despite its promising advantages, cloud storage also faces
many security challenges. For example, machine downtime that
occurred in major cloud service providers has caused a growing
number of cloud incidents. For the medical data, the leakage
or damage to the integrity of the this data will bring great
threats. More importantly, outsourcing medical data to cloud-
based medical storage systems (CMSS) means that the patient
loses physical control of the data. Therefore, the privacy and
integrity protection of the medical data outsourced to medical
cloud storage servers become important issues for the patients. In
the real world, the security of medical data in the cloud is getting
more and more attention [4]. Many countries and institutions
have issued their data security regulations and established the
regulatory agencies to regulate the safe use of medical data. For
example, the European Data Protection Act requires medical
data to be approved before being provided to third parties [5].

To address the integrity issue in cloud storage, the concept
of data integrity auditing has been proposed, which allows the
data owner (DO) to verify the integrity of the outsourced data
stored on a cloud storage server (CSS) without downloading all
of them. To realize the economies of scale in cloud computing,
many third-party auditor (TPA)-based public auditing protocols
have been proposed by researchers, which can reduce the DO’s
computational cost and achieve some ideal features such as batch
auditing and dynamic update of data. However, the security
and the performance of TPA-based integrity auditing protocols
can also be improved. On the security aspect, data breaches
via third parties become a common problem in the current
security situation [6]. For example, according to the BDO and
AusCERT 2018/19 Cyber Security Survey [7], data breaches
through third-party providers and suppliers increased by 74.3%
in Australia. Therefore, even if TPA is considered trustworthy,
the public auditing protocols should ensure the privacy of DO’s
original data to TPA. On the performance aspect, the communi-
cation overhead between TPA and CSS can further be improved.
Besides, despite leaving the powerful computing power of CSS
aside, the computational efficiency of DO and TPA still needs
to be improved, because most existing protocols require a large
number of time-consuming bilinear pairing and map-to-point
hash operations.

A. Our Contributions

To provide integrity protection for the patients in the CMSS
and resolve the above problems, we propose an efficient privacy-
preserving public auditing protocol for the CMSS. The contri-
butions of this paper are illustrated as follows:

1) For a CMSS, we summarize the security and functional
requirements of the semi-trusted TPA-based public au-
diting protocol and design an efficient privacy-preserving
public auditing protocol in this model.

2) The correctness and security of our protocol are analyzed,
and the analysis results show that our protocol achieves
the predetermined security and functional goals. In terms
of functionality, our protocol supports batch verification
and dynamic update of the data. From a security perspec-
tive, our protocol can resist various attacks while ensuring

storage correctness and can protect the privacy of users’
data from being retrieved by TPA.

3) The performance is compared with other related work
from theoretical analysis and simulation experiment as-
pects. The results show that our protocol is more com-
putationally efficient than other related work on TPA
and DO sides due to the less use of time-consuming
operations such as map-to-point hash and bilinear pairing.
Meanwhile, our protocol also has significant advantage in
terms of communication cost, and the advantage is more
noticeable in batch verification as challenged data blocks
increase.

B. Organization

The remainder of the paper is arranged as follows. Section II
describes related work about integrity auditing in could storage.
Section III introduces some basic knowledge used in the paper.
In Section IV, we propose an efficient privacy-preserving public
auditing protocol for CMSS. The correctness and security of our
protocol are analyzed in Section V, and then we evaluate the
performance of our protocol and compare it with that of other
related work in Section VI. Finally, we draw our conclusions in
Section VII.

II. RELATED WORK

Due to the development of cloud storage, more and more
people upload their data to the cloud, and the integrity issue
becomes an urgent problem to be solved. In 2007, Ateniese et
al. [8] proposed the notion of provable data possession (PDP),
which uses homomorphic verifiable tags and random sampling
techniques to achieve the blockless verification of data posses-
sion stored in the untrusted CSS. However, the protocol is only
suitable for the integrity auditing of static cloud data and does
not support dynamic operations, such as the insertion, deletion,
and modification of data blocks. To address this issue, Ateniese
et al. [9] proposed a scalable and efficient PDP protocol for
outsourced cloud data by using symmetric-key cryptography,
which first supports the dynamic operations on outsourced data
blocks, such as modification and deletion. Later, in 2009, Erway
et al. [10] proposed a PDP protocol, which uses authenticated
dictionaries based on rank information to achieve full dynamic
operations, i.e., the modification, deletion, and insertion.

In 2010, to save the cost of data owners, Wang et al. [11] first
proposed a TPA-based dynamic auditing protocol by combining
the Markle Hash Tree and the short signature. The protocol
supports public auditing, full dynamic operations, and batch
auditing. But it has heavy computational cost and communi-
cation overhead during the auditing and update phases. In 2013,
Yang and Jia proposed [12] a public auditing protocol for cloud
storage, which supports dynamic operation of data and batch
verification. However, Ni et al. [13] pointed out that Yang
and Jia’s protocol [12] is vulnerable to a kind of modification
attack, and the modified proof can pass the verification of TPA
even if the original data has been corrupted. Most TPA-based
public auditing protocols have not considered the data leakage
problem so that TPA may obtain user’s data information in some
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Fig. 1. Model of cloud-based medical storage system.

situations. To address this problem, Wang et al. [14] proposed
a public auditing protocol with privacy protection for cloud
storage by using homomorphic linear signature and random
mask technology, such that malicious TPA has no ability to
reveal the data of the users.

To improve the efficiency of public auditing protocol, Hao et
al. [15] proposed an efficient remote data possession checking
protocol, which utilizes the doubly linked lists and arrays to
improve the efficiency. Recently, Shen et al. [16] proposed a
new public auditing protocol for cloud data, which is considered
efficient due to the adoption of a new storage structure. However,
their protocol [16] is vulnerable to the data leakage attack [17],
i.e., an adversary, once he is able to compromise TPA, can also
recover all users’ outsourced data by constructing some suitable
challenges. He et al. [18] considered the privacy-preserving
provable data possession against the data leakage from the
verifier. That means TPA could not obtain more information
about original data than required. For Cloud-based medical
storage system (CMSS), Zhang et al. [19] proposed an efficient
TPA-based public auditing scheme. Subsequently, many TPA-
based public auditing protocols [20]–[24] for cloud storage have
been proposed either to improve security and functionality or to
enhance efficiency.

III. PRELIMINARIES

This section introduces some preliminaries used in this paper,
such as the system model and security requirements of public
auditing protocol for CMSS, the cryptography primitive-bilinear
pairing, and hash table structure.

A. System Model and Security Requirements

We first describe the system model of the CMSS in this
section and then identify the security and functional goals that
the auditing protocol should achieve.

1) General System Model: The system model of the CMSS
in this paper is shown in Fig. 1, which is a widely accepted system
model of TPA-based public auditing protocols. Specifically,
there are four entities in the model, i.e., DO (data owner), MCSS
(medical cloud storage server), TPA (third-party auditor), and
medical staff. What we need to pay attention to is that the medical

staff does not participate in the auditing of the medical data,
and he/she can access the patients’ data in CMSS by the access
control mechanism, which is out of the scope of this paper.

1) DO: the data owner, whose data is collected by differ-
ent medical sensors and outsourced to MCSS, and can
access the data as they like. For security concerns, DOs
entrust TPA to perform integrity auditing operations of
the outsourced data stored on MCSS.

2) MCSS: medical cloud storage server, is an entity that
provides medical data storage service for users with large-
scale cloud computing infrastructure. Different from tra-
ditional servers, MCSS stores massive amounts of med-
ical data containing sensitive information about DOs,
so the privacy and integrity protection is especially im-
portant. To guarantee the integrity of DOs’ data, MCSS
accepts the audit of TPA and generates a corresponding
proof according to the audit challenge launched by TPA.
MCSS is a semi-trusted entity, who performs the corre-
sponding operations according to the protocol but also
expects to provide DOs with proof of integrity without
storing DOs’ original data intact.

3) TPA: a third-party auditor with professional knowledge.
According to DO’s delegation, TPA sends a integrity audit
challenge to MCSS. When receiving the corresponding
proof generated by CSS, TPA determines the integrity of
the medical data by checking the validity of the proof,
and responses the audit result to DO. Generally, TPA is
an honest but curious entity, i.e., TPA is curious about the
original data of DO even if he/she strictly executes the
audit processes.

4) Medical staff: personnel with medical expertise, who can
access the patients’ medical data stored in the MCSS for
health diagnosis and monitoring according to the access
control mechanism. Since we only focus on medical data
auditing, we omit the detailed introduction of this part.

2) Security and Functional Requirements: Based on previ-
ous work in this field, an ideal TPA-based public auditing
protocol for CMSS should meet the following requirements:

1) Resistance to forgery attack: Any adversary including
MCSS cannot forge auditing proof to pass the verification.

2) Resistance to replay attack: MCSS cannot pass the chal-
lenge by replaying previous proofs of the corresponding
file.

3) Resistance to replace attack: MCSS cannot generate a
valid proof by replacing some challenged data blocks with
other data blocks.

4) Privacy-preserving: Any adversary including TPA cannot
recover the original fileF of DO from the proofs provided
by MCSS.

5) Guarantee of storage correctness: DO’s original medical
data should be stored on MCSS intact, and valid proof
should be generated according to the original medical
data. Otherwise, MCSS cannot pass the audit of TPA.

6) Batch auditing: To improve the efficiency of protocol exe-
cution, TPA can handle multiple challenges from different
files simultaneously.

Authorized licensed use limited to: University of New Brunswick. Downloaded on June 09,2022 at 00:24:23 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: EFFICIENT PRIVACY-PRESERVING PUBLIC AUDITING PROTOCOL FOR CLOUD-BASED MEDICAL STORAGE SYSTEM 2023

7) Dynamic support: The protocol allows DOs to update
(insert, delete, modify, or append) some blocks of data
without changing the data of other blocks.

8) High efficiency: The protocol should be computationally
efficient to reduce the overhead of TPA and DO, and also
should be efficient for TPA and MCSS.

B. Basic Cryptography Knowledge

In this section, we introduce the basic knowledge of used
cryptography primitive and security assumptions.

1) Bilinear Pairing: Let G and GT are two multiplicative
cyclic groups with the same order of large prime number p.
The map e : G×G → GT is a bilinear pairing [25], [26] if it
satisfies the following properties:

Bilinearity: For g1, g2 ∈ G and a, b ∈ Zp, e(ga1 , g
b
2) =

e(g1, g2)
ab.

Non-degeneracy: There exists g1, g2 ∈ G such that
e(g1, g2) �= 1GT

.
Computability: There is an efficient algorithm to compute

e(g1, g2) for all g1, g2 ∈ G.
2) Security Assumptions: The security of our protocol is

based on the following intractable problems.
Computational Diffie-Hellman (CDH) Problem: Given ga and

gb, where g is a generator of group G and a, b are two random
numbers in Zp, compute the value gab.

Discrete Logarithm (DL) Problem: Given ga ∈ G, where g is
a generator of groupG and a is a random number inZp, compute
a.

C. Hash Table With Dynamic Operations

The improved hash table is a two-dimensional data structure
that combines the advantages of array and linked list, which
is based on the dynamic hash table given in [27]. It supports
fast file search and update operations. So, it can be adopted by
TPA in public auditing protocol to store the information related
to the files and blocks of DO. By this way, TPA can audit the
integrity of the data and support the function of data update.
The architecture of the improved hash table is shown in Fig. 2,
which contains two components, i.e., the page index and the
page content, where the page index identifies which page the
file belongs to and the page content stores the actual content
related to the file. Firstly, each file is assigned to a page index
by hashing the owner’s ID and the file ID. As shown in the
Fig. 2(a), the page index contains k elements, and which is much
smaller than the total number of the files. Besides, each file-
related information is stored in the page content, and which is
shown in Fig. 2(b). The blocks of a file are stored one by one by
using a linked list, and wi = ki‖Vi is stored in the list for each
block, which contains a random number and a version number of
the block. As can be seen from Fig. 2(b), the improved hash table
structure supports file operations and block operations, and they
are both include modification, deletion, insertion and appending
operations. We will describe the dynamic operations of the hash
table in conjunction with the protocol in the following section.

To find the location of a file with the improved hash table struc-
ture, the page index is first calculated by hashing the owner’s ID

Fig. 2. Illustration of hash table supporting dynamic operations.

and file ID to locate the page to which the file belongs. Then,
the file could be found by searching the certain page via unique
identity UID (owner’s ID ‖ file ID). This structure can enhance
the query efficiency, and we compare it with linked list data
structure. Suppose that there are n2 files in the improved hash
table, and they are evenly distributed across n different pages
with page index index ∈ [1, n], i.e., each page contains n files.
To query each file one time in n2 files by the improved hash
table, we need to query n2(n+ 1) times for the page index and
the page content. But, if we use a linked list to query each file
one time for the n2 files, we need to query n2·(n2+1)

2 times. It is

obvious that n2·(n2+1)
2 > n2(n+ 1), so the query efficiency of

the improved hash table is higher than that of the linked list. For
example, n = 10, 5050 searches are needed for the linked list to
query all files one time, while just 1100 searches are required for
the improved hash table, and it almost reduces search times by
about 78%. Therefore, the hash table of this paper can improve
the efficiency of data query.

IV. PROTOCOL DESIGN

In this section, we propose a new public auditing protocol
for CMSS under the semi-trusted TPA model, which not only
achieves the above security features, but also maintains high
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TABLE I
NOTATIONS USED IN THE PAPER

computational and communication efficiency. The notations
used in the protocol are shown in the Table I.

A. The Description of Our Protocol

The proposed protocol contains two phases, i.e., the setup
phase and the verification phase, and we describe the two phases
of our protocol as below.

1) Setup Phase: This phase contains three algorithms, i.e.,
KeyGen, TagGen and HTGen. Through these algorithms, DO
outsources the data files to MCSS and stores the information
related to data auditing in TPA.

KeyGen: DO runs this algorithm to generate private
and public key pairs. DO generates the key pair (SK =
{sk, x1, x2}, PK = {pk, y1, y2}), where (sk, pk) is a private
and public key pair for signature, x1, x2 are two random pri-
vate keys chosen from Z∗

p, and y1 = gx1 and y2 = gx2 are
two corresponding public keys. Then, DO keeps private keys
SK = {sk, x1, x2} secretly, and publishes the public keys
PK = {pk, y1, y2}.

TagGen: When the data is collected by different medical
sensors, DO first generates the tags corresponding to the out-
sourced data blocks by running the TagGen algorithm, and
sends the data with the tags to MCSS. For a file F col-
lected by the medical sensor, DO separates it to n blocks
F = {m1,m2, . . . ,mn}. Then, DO computes a tag for each
block ti = gx1(x2·mi+h(wi)) (i ∈ [1, n]), where wi = ki‖Vi, ki
is a random number chosen by DO for the ith data block, and
Vi is the current version number of the ith data block. The
n tags form a tag set T = {ti}i∈[1,n]. Besides, DO computes
a file tag θ = (ID‖FID‖n)‖SIGsk(ID‖FID‖n), where
SIGsk(ID‖FID‖n) represents the signature of (ID‖FID‖n)
by using sk. Finally, DO uploads {F, T, θ} to MCSS for storage.
Here we should note that for the medical staff, if the access
control mechanism of the file is satisfied, he/she can access the
file F .

HTGen: A hash table (HT) of the data information is gen-
erated by TPA through running this algorithm, which will be
used for challenge and verification of the data auditing. Ac-
cording to wi = ki‖Vi(i ∈ [1, n]), DO forms an information set
W = {wi}i∈[1,n], and submits {(ID‖FID‖n),W )} to TPA.

Upon receiving the data information, TPA adds it to the HT
according to the introduction in Section III-C.

2) Verification Phase: This phase is also composed of three
algorithms, i.e., Challenge, ProofGen and ProofVer. Accord-
ing to DO’s delegation, TPA runs Challenge algorithm to ran-
domly generate a challenge of the file for MCSS. After receiving
the challenge, MCSS generates a proof by running ProofGen
algorithm according to the challenged blocks, and returns it to
TPA for integrity verification. Then TPA verifies the integrity of
data by running ProofVer algorithm, and returns the result to
DO.

Challenge: DO submits {ID‖FID‖n} to TPA as a delega-
tion of an auditing. TPA requests MCSS for the corresponding
file tag θ, and verifies the signature SIGsk(ID‖FID‖n) by
using pk. If the verification fails, TPA notifies DO that the file
is corrupted. Otherwise, the process continues. TPA randomly
selects c data blocks IDX = {j}j∈[1,c] for challenge, and gen-
erates a random number r ∈ Z∗

p. Then TPA sends a challenge
chal = {IDX = {j}j∈[1,c], r} to MCSS.

ProofGen: Upon receiving the challenge from TPA, MCSS
computes SUM =

∑
j∈[1,c] h(r, j) ·mj mod p, PD = ySUM

2 ,

PT =
∏

j∈[1,c] t
h(r,j)
j , PU = e(PD, y1) and PV = e(PT, g)

according to the challenged data blocks. Then, MCSS signs the
{PU,PV } using KS as SIGKS

(h(PU,PV )), and returns the
corresponding proof {PU,PV, SIGKS

(h(PU,PV ))} back to
TPA.

ProofVer: When getting the proof returned by MCSS, TPA
first checks the validity of the signature SIGKS

(h(PU,PV ))
by using the public key KP . The session is terminated if the
signature verification fails. Otherwise, TPA retrieves {wj}j∈[1,c]
from the hash table according to the challenged blocks. Then,
TPA computes ν =

∑
j∈[1,c] h(r, j) · h(wj) mod p, and checks

PU · e(gν , y1) ?
= PV. If they are equal, the integrity of the

outsourced data is verified by TPA. Otherwise, the integrity of
the outsourced data is corrupted. Finally, TPA returns the result
of the data audit to DO.

B. Dynamic Operations

Dynamic update of the data is a very practical function for
DO, which makes the auditing protocol act normally when
DO updates the data stored in MCSS. In our protocol, the
hash table structure is used to realize dynamic operations on
the outsourced data, such as insertion, deletion, modification
and append operations. Since the file-level dynamic operations
are based on the block-level operations, we just introduce the
dynamic operations of blocks.

1) Block Insertion: Assuming that DO wants to insert a new
block m∗ after the ith block mi for a file. In order to update
the hash table and achieve the insertion operation, DO runs
the textbfTagGen algorithm for the new data block to gen-
erate the corresponding tag t∗. Firstly, DO generates a ran-
dom number k∗, and calculates t∗ = gx1(x2·m∗+h(w∗)), where
w∗ = k∗‖V ∗, and V ∗ = 1. Then, DO sends the dynamic in-
sertion requestBInsert2C = {Insert, ID, FID,m∗, t∗, i} to the
MCSS, and MCSS updates the data according to the insertion re-
quest. Meanwhile, DO sends the insertion request BInsert2T =
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{Insert, ID, FID,w∗, i} to TPA. When receiving the request,
TPA finds the location of the file by using ID‖FID as shown
in III-C, and then finds the ith block. Finally, DO inserts the new
data block information w∗ behind the ith block.

2) Block Deletion: Assuming that DO wants to delete the ith
block of a file, DO sends the block deletion requestBDelete2C =
{Delete, ID, FID, i} to MCSS. When getting the request,
MCSS deletes the corresponding mi and ti from the database
data according to ID and FID. Meanwhile, DO sends the dele-
tion request BDelete2T = {Delete, ID, FID, i} to TPA. When
receiving the request, TPA finds the location of the file by using
ID‖FID as shown in III-C, and finds the ith block. Then, TPA
deletes wi from the hash table, and connects wi−1 and wi+1

together.
3) Block Modification: Assuming that DO wants to modify

the ith block mi of a file to mnew
i . DO runs the TagGen

algorithm to generate a new tag tnewi . Firstly, DO generates a
new random numberknewi , and runs the TagGen algorithm to cal-
culate a new tag tnewi = gx1(x2·mnew

i +h(wnew
i )), where wnew

i =
knewi ‖V new

i and V new
i = Vi + 1. DO sends the block modifica-

tion request BModify2C = {Modify, ID, FID, i,mnew
i , tnewi }

to MCSS. Accordingly, MCSS updates the modified block as the
block modification request. Meanwhile, DO sends the update
information of the block modification request BModify2T =
{Modify, ID, FID, i, wnew

i } to TPA. When receiving the re-
quest, TPA finds the location of the file by using ID‖FID as
shown in III-C and the ith block. At last, TPA replaces wi with
wnew

i .
4) Block Appending: Assuming that DO wants to append

a new block m∗ to the end of a file with n blocks, DO
runs the TagGen algorithm for the new data block to gen-
erate the corresponding tag t∗. Firstly, DO generates a ran-
dom number k∗, and calculates t∗ = gx1(x2·m∗+h(w∗)), where
w∗ = k∗‖V ∗, and V ∗ = 1. Besides, DO signs ID‖FID‖n+ 1
as SIGsk(ID‖FID‖n+ 1) by using sk. Then, DO sends
a request BAppend2C = {Append, ID, FID,m∗, t∗} to the
MCSS, and MCSS appends the (n+ 1)th block m∗ behind
the nth block. Meanwhile, DO sends a request BAppend2T =
{Append, ID, FID,w∗} and SIGsk(ID‖FID‖n+ 1) to
TPA. When receiving the request, TPA finds the loca-
tion of the file by using ID‖FID as shown in III-
C, and appends the (n+ 1)th w∗ behind the nth wn.
Besides, TPA updates the signature to the new one
SIGsk(ID‖FID‖n+ 1).

C. Batch Auditing

In addition to the basic function of single file auditing, the
protocol also supports batch auditing for multiple files from a
DO or multiple DOs, which can greatly improve the efficiency of
auditing. The batch auditing of our protocol also contains three
algorithms: BChallenge, BProofGen and BProofVer.

Suppose that DO wants to check the integrity of b files
{FID1, F ID2, . . . , F IDb}, the specific workflow of the batch
auditing is as follows:

BChallenge: DO submits {ID‖FIDk‖nk}k∈[1,b] to TPA as
a delegation of the batch auditing. TPA requests MCSS for

the corresponding tags of these files {θk}k∈[1,b], and verifies
the signatures {SIGsk(ID‖FIDk‖nk)}k∈[1,b] by using pk. If
one of the verifications fails, TPA notifies DO that at least
one of the file is corrupted. Otherwise, the process continues.
TPA randomly selects c data blocks IDXk = {kj}j∈[1,c] for
file FIDk, and generates a random number r ∈ Zp. Then TPA
sends the challenge chal = {{IDXk = {kj}j∈[1,c])}k∈[1,b], r}
to MCSS.

BProofGen: Upon receiving the challenge from TPA,
MCSS computes SUM =

∑
k∈[1,b]

∑
j∈[1,c] h(r, kj) ·mkj

mod p, PD = ySUM
2 , PT =

∏
k∈[1,b]

∏
j∈[1,c] t

h(r,kj)
kj ,

PU = e(PD, y1) and PV = e(PT, g) according to the
challenged data blocks. Then, MCSS signs the {PU,PV }
using KS as SIGKS

(h(PU,PV )), and returns the
corresponding proof {PU,PV, SIGKS

(h(PU,PV )) back to
TPA.

BProofVer: When getting the proof from MCSS, TPA first
checks the validity of the signatureSIGKS

(h(PU,PV )) by us-
ing the public key KP . The session is terminated if the signature
verification fails. Otherwise, TPA retrieves {wkj}(k∈[1,b],j∈[1,c])
from the hash table according to the challenged files and blocks.
Then, TPA computes ν =

∑
k∈[1,b]

∑
j∈[1,c] h(r, kj) · h(wkj)

mod p, and checks PU · e(gν , y1) ?
= PV. If they are equal, the

integrity of the outsourced files is verified by TPA. Otherwise,
the integrity of part outsourced files is corrupted. Finally, TPA
returns the result of the batch auditing to DO.

V. CORRECTNESS AND SECURITY ANALYSIS

In this section, we first give the correctness analysis of the
proposed protocol. Then we prove that our protocol is secure
and achieves the predetermined goals.

A. Correctness Analysis

The correctness of the protocol means that it can complete the
data integrity audit well, that is, the proof generated according
to the challenge data blocks can pass the data integrity check.
We analyze the correctness of our protocol for both the basic
protocol and the batch verification.

The correctness analysis of the basic protocol based on the
judgment formula is as follows. In the left formula, PU is a
part of proof from MCSS, and v is computed by TPA according
to the information related to the challenged blocks. In the right
formula, PV is another part of proof and it is calculated from
{tj}j∈[1,n].
PU · e(gν , y1)

= e(PD, y1) · e
(
g
∑

j∈[1,c] h(r,j)·h(wj), y1

)

= e(ySUM
2 , y1) · e

(
g
∑

j∈[1,c] h(r,j)·h(wj), y1

)

= e
(
gx2·

∑
j∈[1,c] h(r,j)·mj , y1

)
· e

(
g
∑

j∈[1,c] h(r,j)·h(wj), y1

)

= e

⎛
⎝ ∏

j∈[1,c]

(
gx1·(x2·mj+h(wj))

)h(r,j)

, g

⎞
⎠
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= e

⎛
⎝ ∏

j∈[1,c]
t
h(r,j)
j , g

⎞
⎠

= e(PT, g)

= PV

From the above equation, we can clearly see that the correct-
ness of the integrity auditing for basic protocol is established.

The correctness analysis of the batch auditing is as follows.
In the left formula, PU is also a part of proof from MCSS. But,
different from basic protocol, PU in the batch verification is
calculated from blocks of multiple files. v is computed by TPA
according to the information related to the challenged blocks in
the batch files. In the right formula, PV is another part of proof
and it is calculated from {tkj}k∈[1,b],j∈[1,c].
PU · e(gν , y1)

= e(PD, y1) · e
(
g
∑

k∈[1,b]
∑

j∈[1,c] h(r,kj)·h(wkj), y1

)

= e(ySUM
2 , y1) · e

(
g
∑

k∈[1,b]
∑

j∈[1,c] h(r,kj)·h(wkj), y1

)

= e
(
gx2·

∑
k∈[1,b]

∑
j∈[1,c] h(r,kj)·mkj , y1

)

· e
(
g
∑

k∈[1,b]
∑

j∈[1,c] h(r,kj)·h(wkj), y1

)

= e
(
g
∑

k∈[1,b]
∑

j∈[1,c] x2·h(r,kj)·mkj+h(r,kj)·h(wkj), gx1

)

= e
(
g
∑

k∈[1,b]
∑

j∈[1,c] h(r,kj)·(x2·mkj+h(wkj)), gx1

)

= e
(
g
∑

k∈[1,b]
∑

j∈[1,c] h(r,kj)·x1·(x2·mkj+h(wkj)), g
)

= e

⎛
⎝ ∏

k∈[1,b]

∏
j∈[1,c]

(
gx1·(x2·mkj+h(wkj))

)h(r,kj)

, g

⎞
⎠

= e

⎛
⎝ ∏

k∈[1,b]

∏
j∈[1,c]

t
h(r,kj)
kj , g

⎞
⎠

= e(PT, g)

= PV

From the above equation, we can clearly see that the correct-
ness of the butch auditing is established, i.e., our protocol can
verify the integrity of batch files at one time.

B. Security Proof

1) Storage Correctness: Assuming that the CDH problem
and DL problem in G are intractable, the proposed protocol
guarantees the feature of storage correctness, i.e., if the MCSS
does not store DO’s data intact, it cannot forge a proof to pass
the verification of TPA.

Proof: The proof is based on the proof method in [28]. If the
adversaryA (MCSS) can generate a proof to pass the verification
of TPA without storing the data of DO intact, the challenger C
(act as DO) can construct a simulator to solve the CDH or DL
problems. The proof is accomplished with the following games.

Game 1: Both C and A normally act as the description in
Section IV-A. That is, C runs the KeyGen to obtain {SK,PK},
and sends the public parameters PK to A. A queries the sig-
natures of data blocks. C runs TagGen to generates the tag set
T = {ti}i∈[1,n] and file tag θ, and sends the tag set and file tag to
A. Then C sends a challenge to A. Finally, A returns the proof
{PU,PV } to the challenger.

Game 2: Game 2 is similar to the Game 1, with one difference.
When receiving the challenge from C, A responses a forged
proof {PU,′ PV ′}, which is different from the expected proof
{PU,PV }. If the forged proof can pass the verification, A wins
the game.

Analysis: Assuming that A wins the Game 2 with non-
negligible probability. Then we can construct a simulator to solve
the CDH problem, i.e. knowing y1 = gx1 and y2 = gx2 , it can
calculate gx1x2 without using x1 and x2.

Assuming that the correct proof from the honest prover
is {PU,PV }, where PU = e(PD, y1), PD = ySUM

2 and
PV = e(PT, g), and it meets the verification equation PU ·
e(gv, y1) = PV , i.e. e(ySUM

2 , y1) · e(gv, y1) = e(PT, g).
Assuming that the proof {PU,′ PV ′} forged by A

can pass the verification, where PU ′ = e(PD,′ y1), PD =
ySUM ′
2 andPV = e(PT,′ g). Then,PU ′ · e(gv, y1) = PV ′, i.e.
e(ySUM ′

2 , y1) · e(gv, y1) = e(PT,′ g).
By dividing the above equations, we can get

e(ySUM−SUM ′
2 , y1) = e(PT · PT ′−1, g). There is at least

a data block m′
i �= mi such that SUM �= SUM ′, otherwise

PU = PU ′ and PV = PV ′. Assuming that ΔSUM =
SUM − SUM ′. As a result, we have e(ySUM−SUM ′

2 , y1) =
e(yΔSUM

2 , y1) = e(gx1x2ΔSUM , g) = e(PT · PT ′−1, g).
Therefore, gx1x2ΔSUM = PT · PT ′−1, and gx1x2 can be
calculated as gx1x2 = (PT · PT ′−1)

1
ΔSUM without using x1

and x2. This contradicts with the assumption that the CDH
problem in G is intractable.

Game 3: Game 3 is similar to the Game 2, the challenger
C chooses c blocks to challenge the adversary A by send-
ing chal = {IDX = {j}j∈[1,c], r}. And then, the adversary
A computes the proof {PU,′ PV }, where PU ′ = e(PD,′ y1),
PD′ = ySUM ′

2 , and SUM ′ is not equal to the expected SUM .
If PU ′ · e(gv, y1) = PV , we say that the adversary A wins the
game.

Analysis: Assuming that the adversary wins the Game 3 with
non-negligible probability. Then we can construct a simulator
to solve the DL problem. Given (g, w) ∈ G, the goal of the
simulator is to calculate valueα such thatw = gα. The simulator
acts as C in Game 3, but with some differences.

In the Setup phase, the simulator generates a random number
x1 from Zp, and calculates the corresponding public key y1 =
gx1 . Then, the simulator chooses two random numbers a, b ∈
Zp, and sets y2 = gawb. The tag of each block can be calculated
as ti = yx1mi

2 gx1h(wi) (i ∈ [1, n]).
Assuming that the correct proof from the honest prover is

{PU,PV }, where PU = e(PD, y1) and PD = ySUM
2 , and

it meets the verification equation PU · e(gv, y1) = PV , i.e.
e(ySUM

2 , y1) · e(gv, y1) = PV .
Assuming that the proof {PU,′ PV } forged by A can also

pass the verification, and we have PU ′ · e(gv, y1) = PV , i.e.
e(ySUM ′

2 , y1) · e(gv, y1) = PV .
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From the above two equations, we have e(ySUM
2 , y1) =

e(ySUM ′
2 , y1), and then we can get ySUM

2 = ySUM ′
2 . There is

at least a data block m′
i �= mi such that SUM �= SUM ′. Oth-

erwise, PU = PU ′. Let ΔSUM = SUM ′ − SUM �= 0, we
have 1 = yΔSUM

2 = (gawb)ΔSUM = gaΔSUM · wbΔSUM . So
the solution of the DL problem can be found asw = g−

aΔSUM
bΔSUM =

g−
a
b . We should note that the probability of b = 0 is 1

p . In other
words, the probability that we find a solution of the DL problem
is 1− 1

p , which contradicts with the assumption that the DL
problem in G is intractable.

Based on the above analysis, due to the difficulty of CDH
problem and DL problem in G, the MCSS cannot forge the
proof to pass the verification when it does not store the original
data intact. In other words, our protocol ensures the feature of
storage correctness.

2) Resistance to Forgery Attack: As shown in the analysis of
the storage correctness part, the MCSS cannot forge the proof to
pass the verification without completely storing DO’s original
data. Besides, in the ProofGen algorithm of our protocol, in ad-
dition to the {PU,PV }, the signature SIGKS

(h(PU,PV )) is
also contained in the proof. Therefore, without knowing MCSS’s
private key KS for the signatures, any adversary containing the
malicious TPA cannot forge the proof to pass the verification.
In other words, our protocol can resist forgery attack.

3) Resistance to Replay Attack: In each challenge phase of
the proposed protocol, TPA randomly picks c blocks and random
number r as the challenge, which ensures the freshness of each
challenge. In each challenge, PD is calculated according to the
original data mj corresponding to the challenged blocks and
the random numbers h(r, j), j ∈ [1, c], while PT is calculated
according to the tags corresponding to the challenged blocks
and the random numbers h(r, j), j ∈ [1, c]. Then the proof
(PU,PV ) can be generated according to (PD,PT ). The proof
of the current challenge can only be generated based on the
challenge information. Therefore, MCSS cannot replay previous
proofs for the new challenge, and our protocol can resist replay
attack.

4) Resistance to Replacing Attack: MCSS may want to per-
form replacing attack and hope to generate a proof to pass
the verification by replacing the challenged block i with an
unchallenged block k. In order to perform this attack, when re-
ceiving the challenge chal = {IDX = {j}j∈[1,c], r} from TPA,
MCSS computes SUM ′ =

∑
j∈[1,c]&amp;j �=i h(r, j) ·mj +

h(r, i) ·mk, PD′ = ySUM ′
2 , PT ′ =

∏
j∈[1,c]&amp;j �=i t

h(r,j)
j ·

t
h(r,i)
k , PU ′ = e(PD,′ y1), and PV ′ = e(PT,′ g). Then, MCSS

signs the {PU,′ PV ′} using KS as SIGKS
(PU,′ PV ′), and re-

turns the corresponding proof {PU,′ PV,′ SIGKS
(PU,′ PV ′)}

back to TPA. TPA checks the validity of the proof, and the
replacing attack succeeds if the proof passes the verification.
Otherwise, the replacing attack fails.

According to the forged proof, the left part of the verification
is
PU ′ · e(gν , y1) = e(PD,′ y1) · e(g

∑
j∈[1,c] h(r,j)·h(wj), y1)

= e(ySUM ′
2 , y1) · e(g

∑
j∈[1,c] h(r,j)·h(wj), y1)

= e(g(
∑

j∈[1,c]&amp;j �=i x2·h(r,j)·mj+x2·h(r,i)·mk), gx1)

·e(g
∑

j∈[1,c] h(r,j)·h(wj), gx1)

= e(g
∑

j∈[1,c]&amp;j �=i x1(x2·mj+h(wj))·h(r,j), g)
·e(gx1(x2·mk+h(wi))·h(r,i), g)

= e(
∏

j∈[1,c]&amp;j �=i g
x1(x2·mj+h(wj))·h(r,j), g)

·e(gx1(x2·mk+h(wi))·h(r,i), g)
The right part of the verification is
PV ′ = e(PT,′ g) = e(

∏
j∈[1,c]&amp;j �=i t

h(r,j)
j · th(r,i)k , g)

= e(
∏

j∈[1,c]&amp;j �=i g
x1(x2·mj+h(wj))·h(r,j), g)

·e(gx1(x2·mk+h(wk))·h(r,i), g)
By comparing the left part with the right part, we can know

that they will be equal only when h(wi) = h(wk). However,
according to its construction, wi is unique for each block and
not equal to wk. Therefore, the proof generated by the above
method cannot pass the verification, and our protocol can resist
replacing attack.

5) Privacy-Preserving: In Shen et al.’s protocol [16],
the data proof D =

∏
i∈[1,s] mi · ri is a linear combination

of random numbers and data blocks, and transmitted via a
public channel. Therefore, any adversary who compromises
TPA, can recover the original data of DO by constructing
appropriate challenges [17]. However, in our protocol,
the proof is (PU,PV, SIGKS

(PU,PV ), where PU =

e(PD, y1), PV = e(PT, g), PD = y
∑

j∈[1,c] h(r,j)·mj

2 , and

PT =
∏

j∈[1,c] t
h(r,j)
j . The data blocks are protected by the

bilinear pairing, and TPA has no way to recover DOs’ original
data from the proof due to the intractability of the discrete
logarithm in GT . Therefore, our protocol can guarantee the
privacy of DOs’ data.

6) Sampling Audit and MCSS Misbehavior Detection: From
a technical point of view, the malicious behavior of MCSS can
be prevented if TPA audits all the blocks of the file. However,
it will consume more computational costs. To balance the com-
putational efficiency and misbehavior detection of MCSS, the
“sampling” technique is first introduced by [8], which greatly
reduces the workload of MCSS, while detecting the malicious
behavior of MCSS with high probability. According to the
analysis of [8], when 1% of data blocks are deleted by MCSS,
TPA just needs to challenge 300 blocks and 460 blocks to
detect the misbehavior of MCSS with probability 95% and 99%,
respectively. Our protocol adopts the “sampling” technique, and
can also balance the computational efficiency and misbehavior
detection of MCSS.

VI. COMPARISONS WITH RELATED PROTOCOLS

In this section, we compare our protocol with other three re-
lated protocols [16], [23], [24] in three aspects, namely security
and functional features, computational cost and communication
overhead.

A. Security and Functionality Comparison

We use the security and functional requirements listed in
Section III-A2 as the evaluation criteria for the comparison. Ac-
cording to previous work, we list the results of the comparison in
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TABLE II
SECURITY AND FUNCTIONAL COMPARISON

TABLE III
NOTATIONS FOR COMPUTATIONAL COST EVALUATION

Table II. As we can see from the table, Shen et al.’s protocols [16]
cannot guarantee the feature of privacy-preserving. Actually,
Shen et al.’s protocol [16] is vulnerable to data privacy breach
attack [17], and an adversary may obtain all users’ outsourced
data once he compromises TPA. Besides, Shen et al.’s protocol
[16] and Guo et al.’s protocol [23] both rely on the trusted TPA,
this assumption weakens the scope of the protocols in practical
applications. On the one hand, it is difficult to find a trusted third
party in reality. On the other hand, data leaks caused by third
parties are becoming increasingly frequent. While in terms of
functionality, both Guo et al.’s protocol [23] and Hahn et al.’s
protocol [24] do not support batch verification of multiple files.
Compared with the related work in [16], [23], [24], our protocol
meets all the predetermined security and functional requirements
that defined in Section III-A. Therefore, our protocol is more
secure in real-world applications.

B. Computational Cost Comparison

For the computational cost comparison, we comprehensively
compare the efficiency of three algorithms: tag generation algo-
rithm (DO), proof generation algorithm (MCSS/CSS) and verifi-
cation algorithm (TPA). In the comparison, we assume that each
file contains n blocks, and c blocks are challenged each time.
Besides, each block contains s sectors in Guo et al.’s protocol
[23]. In order to facilitate the computational cost comparison,
some notations are defined in Table III. Among these operations,
Th2G is the most time-consuming one, followed by TeG, TmG

and Tp. The computational complexity of other operations is
much lower than that of these four operations, and do not exceed
than 1 ms.

In our protocol, DO requires nTeG + 2nTmZ + Ts + nTh

to generate n tags for a file. In the proof generation process,
the computational overhead required for MCSS to generate
a proof is 2Tp + (c+ 1)TeG + (c− 1)TmG + cTmZ + Ts +

(c+ 1)Th. Subsequently, the computational overhead required
by TPA is Tp + TeG + TmGT

+ cTmZ + 2Ts + (2c+ 1)Th to
verify the validity of the proof.

In Shen et al.’s protocol [16], the calculation overhead
required for DO to generate n tags for a file is 2nTeG +
nTmG + Ts + nTh2G. In the proof generation process, CSS
needs cTeG + (c− 1)TmG + cTmZ to generate a proof to re-
spond to a challenge. Subsequently, to verify the validity of
the proof, the computational overhead required by TPA is
(c+ 2)Tp + TeG + cTmGT

+ Ts + cTh2G.
In Guo et al.’s protocol [23], each block is further divided

into s sectors. To generate n tags for a file, DO requires a com-
putational overhead of 3nTeG + nTmG + nsTmz + nTh. In the
proof generation process, the computational overhead required
for CSS to generate a proof is 2csTmz + 2cTeG + (c− 1)TmG.
Subsequently, the computational overhead required by TPA for
the proof verification is 2Tp + (c+ s)TmG + (2 + s)TeG.

In Hahn et al.’s protocol [24], the calculation overhead
for algorithm SigGen(·) required for DO to generate n
tags of a file is nTh + nTh + 2nTmZ + 2(n− 1)TeZ + (2n+
1)Th2G + nTmG + nTeG. In the proof generation process, CSS
needs nTh + cTmZ + cTeG + cTmZ to generate a proof as a
response to the challenge. Then, to verify the validity of the
proof, the computational overhead required by TPA is (c+
2)Th2G + 2cTeG + 2(c− 1)TmG + 2Tp + 2TmG.

We list the above analyzed computational cost of four proto-
cols in the Table IV. From the table, it is easy to see that the
computational cost of our protocol on DO side is less than other
three protocols [16], [23], [24] since our protocol needs less TeG

operations and does not need the time-consuming operations
of map-to-point hash Th2G or multiplication TmG. Meanwhile,
compared with the other three protocols [16], [23], [24], our
protocol significantly reduces the computational cost of TPA,
because the integrity audit of our protocol does not need to
perform map-to-point hash and only requires 1 bilinear pairing
operation.

In order to show the computational efficiency of our protocol
and other related protocols [12], [16], [23] more intuitively,
in addition to above theoretical analysis, we also simulate the
protocols using the Java language on the Intellij IDEA platform
based on the jpbc 2.0.0 library, and the simulations are performed
under i5 8400 @ 2.80 GHz processor and 16 G memory with
Windows 10 system. Besides, the type A pairing (a.properties)
is used in the experiment. Furthermore, the file F is divided into
n data blocks in the setting, and each of which is 16 kb. Besides,
the block is further divided into s = 128 sectors in protocol
[23]. The number of challenged data blocks is defined as 40%
of the total data blocks. To keep the fairness of the experiments,
the simulations of different protocols are made under the same
operation environment with the same size of files/blocks and the
same system parameters.

The experimental results are shown in Fig. 3, where we
simulated the computational cost of tag generation process (DO),
the proof generation (MCSS/CSS), the proof verification (TPA)
and the batch auditing (MCSS and TPA). For the computational
cost of DO to generate file tags, Fig. 3(a) shows that the computa-
tional efficiency of our protocol is much better than the protocols
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TABLE IV
COMPUTATIONAL COST COMPARISON

Fig. 3. Experimental results of computational cost comparison.

in [16], [23], [24] when the challenged blocks change from 100
to 1000, and the growth rate of time overhead is much lower
than that in the other protocols [16], [23], [24] as the number
of blocks increases. More specifically, the time consumption of
DO for tag generation of our protocol is just 30% and 24% of the
time cost in Shen et al.’s protocol [16] and Hahn et al.’s protocol
[24], respectively. In other words, compared with other related
protocols, our protocol saves at least 2/3 of the computational
cost on DO side. Fig. 3(b) shows the computational cost of
MCSS/CSS for proof generation, from which we can see that the
computational efficiency of our protocol is similar with others.
The computational cost of TPA for proof verification is shown in

Fig. 3(c), from which we can see that our protocol significantly
reduces the computational cost of TPA. Specifically, the time
consumption of our protocol is always less than 0.1 s since TPA
does not need to perform any operations with high computational
complexity, while the time consumption of Shen et al.’s protocol
[16] and Hahn et al.’s protocol [24] increases linearly with the
increase in the number of challenge blocks. Therefore, compared
with other protocols [16], [23], [24], the computational cost on
TPA side of our protocol is negligible. Finally, since Guo et al.’s
protocol [23] and Hahn et al.’s protocol [24] do not support batch
auditing for multi files, so we just compare the computational
efficiency of batch verification with that in Shen et al.’s protocol
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[16]. The comparison result is shown in Fig. 3(d), in which we
assume that TPA verifies multi files at once and each file is 16 kb
with 10 blocks. Besides, we counted both the time consumption
of proof generation and proof verification in the batch auditing
situation. We can see from the figure that our protocol has a dis-
tinct advantage in computational efficiency of batch verification.
In summary, compared with the protocols [16], [23], [24], our
protocol is computationally efficient both in single file auditing
and batch auditing for multi-files. It significantly improves the
computational efficiency of DO and TPA, and the computational
efficiency of MCSS does not decrease. Therefore, the proposed
protocol is more computationally efficient for real-environment
applications.

C. Communication Cost Comparison

In this section, we evaluate another aspect of the performance,
i.e., the communication overhead, and compare our protocol
with other related protocols [16], [23], [24]. We also show
the communication overhead comparison in both table and
figure forms. In the comparison, the communication overheads
costed by that TPA submits the challenge to MCSS/CSS and
MCSS/CSS responds the proof to TPA are counted. Since the
type A pairings (a.properties) is used for the evaluation, p is
160 bits length, the curve is based on a base field of 512 bits,
and the bit lengths of G1, G2 (or G) and GT are all 1024 bits.
Besides, |d| and |q| represent the bit lengths of the index number
of challenged blocks and the signature, and they are 16 bits and
160 bits, respectively.

We count the communication overhead between MCSS/CSS
and TPA for a challenge with c blocks. In our protocol, TPA
sends a challenge chal = {IDX = {j}j∈[1,c], r} to MCSS,
and the communication overhead for this process is c · |d|+
|p| = (160 + 16c) bits. In addition, MCSS responds a proof
{PU,PV, SIGKS

(PU,PV )} to TPA, and the communication
overhead is 2 · |GT |+ |q| = 2208 bits. In Shen et al.’s proto-
col [16], TPA challenges CSS and sends chal = {i, ri}i∈[1,c]
to CSS. The communication overhead of this process is c ·
|d|+ c · |p| = 176c bits. As a response, CSS submits a proof
{T,D} to TPA and the communication overhead is |G|+
|p| = 1184 bits. In Hahn et al.’s protocol [24], the com-
munication overhead between CSS and TPA is the same
with that of Shen et al.’s protocol. In Guo et al.’s protocol
[23], TPA challenges CSS and sends chal = {Q,K,B}, Q =
{il, al}cl=1,K ⊂ 1, . . . , λ, |K| = 1 and B = ∅ to CSS. The
communication overhead of this process is (c+ 1) · |d|+ c ·
|p| = 176c+ 16 bits where |K| = 1 is set as 16 bits. As a
response, CSS submits a proof {μ, σ,	p} to TPA and the com-
munication overhead is 144c+ 16 + |G|+ |p| = 1200 + 144c
bits supposing that each node cn has two children where cn
presents the auxiliary information. Based on above analysis, we
list the communication overhead comparison of three protocols
for a single file challenge in Table V. It clearly shows that
compared with other related protocols [16], [23], [24], our proto-
col significantly reduces the communication overhead between
MCSS and TPA.

TABLE V
COMMUNICATION COST COMPARISON FOR A CHALLENGE

Fig. 4. Communication cost comparison.

Fig. 4 shows a more intuitive comparison of the communica-
tion overheads. First, the communication comparison result of
the different protocols in single file auditing is given in Fig. 4(a),
where x-axis and y-axis represent the number of challenged
blocks and the size of communication overhead, respectively.
We can see from Fig. 4(a) that the growth rate of communication
overhead in our protocol increases slowly as the number of
challenged blocks increases, while the other three protocols
[16], [23], [24] are just the opposite. Specifically, compared with
other related protocols [16], [23], our protocol can save about
90% of communication overhead as the number of challenged
blocks increases. Besides, we also give Fig. 4(b) to show the
communication overhead comparison between single auditing
and batch auditing of our protocol. In the comparison, we assume
that each TPA challenges 60 blocks for each file. Besides, in
the process of single auditing, TPA challenges the files one by
one until the challenged files reach a certain number. In the
Fig. 4(b), x-axis and y-axis represent the number of challenged
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files and the size of the communication overhead, respectively,
and it is clear that batch auditing is more efficient than single file
auditing in communication. As the number of challenged files
increases, the communication overhead of batch auditing is no
more than 2% of the total communication overhead of single file
auditing.

From the above analysis, we can conclude that our protocol
performs better than other protocols [16], [23], [24] in terms
of communication overhead, especially as the number of chal-
lenged files increases.

VII. CONCLUSION

To ensure the integrity of medical data for cloud-based med-
ical storage systems, we have proposed an efficient privacy-
preserving semi-trusted TPA-based public auditing protocol.
Compared with other previously reported work, our protocol not
only ensures storage correctness of MCSS, but also guarantees
the privacy of DO’s data against semi-trusted TPA. Besides, our
protocol can also resist common attacks. In the performance
aspect, the experiment results show that our protocol not only
greatly reduces the computational costs of TPA and DO, but
also significantly saves the communication overhead between
TPA and MCSS. Specifically, compared with other related work,
the computational cost of TPA in our protocol is negligible,
and DO saves more than 2/3 of computational cost, while the
computational complexity of MCSS has not increased. On the
communication overhead part, our protocol saves nearly 90%
of communication overhead between MCSS and TPA as the
number of challenged blocks increases. In short, our protocol is
performance-friendly for real applications.

In the future, we will focus on blockchain-based decentralized
remote data integrity auditing in cloud storage, and solve the
problems of failure of single point, performance bottleneck, and
user privacy leakage in TPA-based protocols.
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